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Abstract

The hidden weighted bit function (HWBF), introduced by R. Bryant in IEEE Trans.
Comp. 40 and revisited by D. Knuth in Vol. 4 of The Art of Computer Programming, is
a function that seems to be the simplest one with exponential Binary Decision Diagram
(BDD) size. This property is interesting from a cryptographic viewpoint since BDD-
based attacks are receiving more attention in the cryptographic community. But, to be
usable in stream ciphers, the functions must also satisfy all the other main criteria. In
this paper, we investigate the cryptographic properties of the HWBF and prove that it
is balanced, with optimum algebraic degree and satisfies the strict avalanche criterion.
We calculate its exact nonlinearity and give a lower bound on its algebraic immunity.
Moreover, we investigate its normality and its resistance against fast algebraic attacks.
The HWBF is simple, can be implemented efficiently, has a high BDD size and rather
good cryptographic properties, if we take into account that its number of variables can be
much larger than for other functions with the same implementation efficiency. Therefore,
the HWBF is a good candidate for being used in real ciphers. Indeed, contrary to the
case of symmetric functions, which allow such fast implementation but also offer to the
attacker some specific possibilities due to their symmetry, its structure is not suspected
to be related to such dedicated attacks.

Keywords: Hidden weighted bit function, algebraic immunity, nonlinearity,
BDD-based attack.

1. Introduction

To resist the main known attacks, Boolean functions used in stream ciphers should
have good cryptographic properties: balancedness, high algebraic degree, high algebraic
immunity, high nonlinearity and good immunity to fast algebraic attacks. Up to now,
many classes of Boolean functions with high algebraic immunity have been introduced [1,
5, 6, 7, 8, 13, 14, 22, 23, 28, 29, 30, 31, 36, 37, 38, 41, 42, 43]. However, most of them
do not satisfy all the necessary criteria and the few classes which do satisfy, are not
very efficiently implementable; moreover, none of the papers studying these classes took
BDD-based attacks into consideration.
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BDD-based attacks were first introduced by Krause in 2002 [20]. They might be
efficient against LFSR-based generators [20, 21, 34, 35]. To resist BDD-based attacks, a
Boolean function should have a high BDD size.

The hidden weighted bit function (HWBF) was proposed by Bryant [2]. It is an easily
defined function that has an exponential BDD size, but has a VLSI implementation with
low area-time complexity [2]. In [19], Knuth reproved Bryant’s theorem stating that the
HWBF has a large BDD size, regardless of how one reorders its variables. Therefore, the
HWBF can resist BDD-based attacks and could be implemented efficiently. However,
many other cryptographic properties of the HWBF were still unknown.

In this paper, we investigate the important cryptographic properties of this function
and show that it is balanced, with optimum algebraic degree and satisfies the strict
avalanche criterion. We calculate exactly its nonlinearity and give a lower bound on its
algebraic immunity. These two parameters are not at an optimal level (but they are
not low either). The function would then not be a good choice as a filter function (in a
stream cipher) if it was implemented with a number of variables which is usual for other
functions such as the Carlet–Feng function [7] (say, between 16 and 20 variables). But its
very simple structure allows using it with many more variables (at least twice) and then
the values of the nonlinearity and of the algebraic immunity allow good resistance to the
main attacks while the function has still a much faster hardware implementation, which
allows the stream cipher to be in the same time robust against the main known attacks
and fast. This is also the case of some symmetric functions (whose output depend only on
the Hamming weight of the input), but the specificity of symmetric functions represents
a threat since it has the reputation of allowing dedicated attacks. The structure of the
HWBF function is almost as simple as that of symmetric functions but the fact that, for
a given Hamming weight different from 0 and n of the input, the output is non-constant
(and is even almost balanced in the case of Hamming weights near n/2, that is, for most
probable ones), the function represents a better tradeoff between robustness and speed.
We also investigate the normality and give some computational results on the resistance
of the HWBF against fast algebraic attacks, revealing that the HWBF displays good
behavior against fast algebraic attacks.

The paper is organized as follows. In Section 2, the necessary background is estab-
lished. We then investigate the cryptographic properties of the HWBF in Section 3. We
end in Section 4 with conclusions.

2. Preliminaries

Let Fn2 be the n-dimensional vector space over the finite field F2. We denote by Bn
the set of all n-variable Boolean functions, from Fn2 into F2.

Cosets of vector subspaces are also called flats. Let f ∈ Bn and E be any flat. If the
restriction of f to E, denoted by f |E , is constant (respectively affine), then E is called a
constant (respectively affine) flat for f .

Any Boolean function f ∈ Bn can be uniquely represented as a multivariate polyno-
mial in F2[x1, · · · , xn],

f(x1, . . . , xn) =
∑

K⊆{1,2,...,n}

aK
∏
k∈K

xk,
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which is called its algebraic normal form (ANF). The algebraic degree of f , denoted by
deg(f), is the number of variables in the highest order term with nonzero coefficient.

A Boolean function is affine if there exists no term of degree strictly greater than 1
in the ANF. The set of all affine functions is denoted by An.

Let
1f = {x ∈ Fn2 |f(x) = 1}, 0f = {x ∈ Fn2 |f(x) = 0},

be the support of a Boolean function f , respectively, its complement. The cardinality
of 1f is called the Hamming weight of f , and will be denoted by wt(f). The Hamming
distance between two functions f and g is the Hamming weight of f + g, and will be
denoted by d(f, g). We say that an n-variable Boolean function f is balanced if wt(f) =
2n−1.

Let f ∈ Bn. The nonlinearity of f is its distance from the set of all n-variable affine
functions, that is,

nl(f) = min
g∈An

d(f, g).

The nonlinearity of an n-variable Boolean function is bounded above by 2n−1 − 2n/2−1,
and a function is said to be bent if it achieves this bound. Clearly, bent functions exist
only for even n and it is known that the algebraic degree of a bent function is bounded
above by n

2 [4, 33]. The r-order nonlinearity, denoted by nlr(f), is its distance from the
set of all n-variable functions of algebraic degrees at most r.

A Boolean function f ∈ Bn is called k-normal (respectively, k-weakly-normal) if there
exist a k-dimensional constant (respectively, affine) flat for f . If k = dn2 e, f is simply
called a normal (respectively, weakly-normal) function.

For any f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of f if fg (the
function defined by fg(x) = f(x)g(x)) is null, and the algebraic immunity of f , denoted
by AI(f), is the minimum value of d such that f or f+1 admits an annihilator of degree
d [25]. It is known that the algebraic immunity of an n-variable Boolean function is
bounded above by dn2 e [11].

To resist algebraic attacks, a Boolean function f should have a high algebraic im-
munity, which implies that the nonlinearity of f is also not very low since, according to
Lobanov’s bound [24]:

nl(f) ≥ 2

AI(f)−2∑
i=0

(
n− 1

i

)
.

To resist fast algebraic attacks, a high algebraic immunity is not sufficient. If we
can find g of low degree and h of algebraic degree not much larger than n/2 such that
fg = h, then f is considered to be weak against fast algebraic attacks [10, 17]. The
higher order nonlinearities of a function with high (fast) algebraic immunity is also not
very low [3, 27, 40].

The Walsh transform of a given function f ∈ Bn is the integer-valued function over
Fn2 defined by

Wf (ω) =
∑
x∈Fn

2

(−1)f(x)+ω·x,

where ω ∈ Fn2 and ω ·x is an inner product, for instance, ω ·x = ω1x1 +ω2x2 + · · ·+ωnxn.
It is easy to see that a Boolean function f is balanced if and only if Wf (0) = 0. Moreover,
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the nonlinearity of f can be determined by

nl(f) = 2n−1 − 1

2
max
ω∈Fn

2

|Wf (ω)|.

The autocorrelation function of f ∈ Bn is defined by

Cf (α) =
∑
x∈Fn

2

(−1)f(x)+f(x+α).

Also, f satisfies the strict avalanche criterion if Cf (α) = 0, for wt(α) = 1.
For convenience, we denote the largest odd m such that m ≤ n by dn, that is,

dn = 2bn−12 c+ 1.

3. Cryptographic properties of the hidden weighted bit function

The hidden weighted bit function (HWBF) [2] in n-variables h ∈ Bn is defined as
follows:

h(x) =

{
0 if x = 0,
xwt(x) otherwise.

We shall use hn if we need to emphasize the number of variables that h depends on.
If we let h′ ∈ Bn be defined by

h′(x) =

{
1 if x = (1, 1, . . . , 1),
xwt(x)+1 otherwise,

that is, h′(x1, x2, . . . , xn) = h(x2, . . . , xn, x1), then hn+1 is the concatenation hn+1 =
hn||h′n.

Let n = 4k + 1. Set xk+1 = xk+2 = . . . = x2k = 0 and x2k+1 = x2k+2 = . . . =
x3k+1 = 1. Then the obtained subfunction from hn is the 2k-variable majority function,
which has the optimum algebraic immunity k (see [13]).

Theorem 1. The HWBF h is balanced and has algebraic degree n − 1 (optimum for a
balanced function), for n ≥ 3.

Proof. Clearly,

|1h| =
n∑
i=1

|{x| wt(x) = i and xi = 1}| =
n∑
i=1

(
n− 1

i− 1

)
= 2n−1,

and the first claim is proven.
We know (see e.g. [4, 12]) that the coefficient of a monomial xu =

∏n
i=1 x

ui
i in

the algebraic form of f equals
∑
x�u f(x) (mod 2) where x � u means xi ≤ ui for

i = 1, . . . , n.
We deduce that the coefficient of the monomial x1x2 · · ·xk−1xk+1 · · ·xn (of degree n−1)

equals
∑n
j=1 |{x| wt(x) = j, xj = 1 and xk = 0}| =

∑n−1
j=1
j 6=k

(
n−2
j−1
)

= 2n−2−
(
n−2
k−1
)

(mod 2).

In particular, for k = n−1, the coefficient equals 1, for n ≥ 3. Hence, deg(h) = n−1.

Theorem 2. The HWBF h satisfies the strict avalanche criterion.
4



Proof. We need to prove that h(x)+h(x+α) is balanced, for α = (α1, . . . , αn), wt(α) = 1,
say αk = 1, where 1 ≤ k ≤ n. Since h(x) and h(x+ α) are both balanced, it is sufficient
to prove that |1h(x) ∩ 1h(x+α)| = 2n−1 − |1h(x) ∩ 0h(x+α)| = 2n−2. Clearly, if xk = 1 then
wt(x+ α) = wt(x)− 1 and if xk = 0 then wt(x+ α) = wt(x) + 1. Hence, separating the
cases wt(x) = i < k, i = k, i = k + 1 and i > k + 1, we have

|{x|xk = 1, h(x) = h(x+ α) = 1}|

=

k−1∑
i=3

(
n− 3

i− 3

)
+

(
n− 2

k − 2

)
+ 0 +

n∑
i=k+2

(
n− 3

i− 3

)
(since if i 6= k, k + 1 for instance, then wt(x) = i and wt(x+ α) = i+ 1)

= 2n−3 −
(
n− 3

k − 3

)
−
(
n− 3

k − 2

)
+

(
n− 2

k − 2

)
= 2n−3,

and, separating the cases i < k − 1, i = k − 1, i = k and i > k, we have

|{x|xk = 0, h(x) = h(x+ α) = 1}|

=

k−2∑
i=2

(
n− 3

i− 2

)
+

(
n− 2

k − 2

)
+ 0 +

n−1∑
i=k+1

(
n− 3

i− 2

)
= 2n−3 −

(
n− 3

k − 3

)
−
(
n− 3

k − 2

)
+

(
n− 2

k − 2

)
= 2n−3.

Therefore, |1h(x) ∩ 1h(x+α)| = 2n−2, and the result follows.

3.1. Nonlinearity

Lemma 1. Let ω = (ω1, . . . , ωn) ∈ Fn2 with wt(ω) = 1. Then

Wh(ω) ≤ 4

(
n− 2

dn−22 e

)
,

and the bound is tight.

Proof. Let 1 ≤ k ≤ n and ωk = 1. We have

Wh(ω) =
∑
x∈Fn

2

(−1)h(x)+ω·x = 1 +

n∑
i=1

∑
wt(x)=i

(−1)xi+xk

= 1 + 2n − 1− 2|
n⋃
i=1

{x| wt(x) = i and xi + xk = 1}|

Since

|{x| wt(x) = i and xi + xk = 1}| =
{

0 if i = k or n,

2
(
n−2
i−1
)

otherwise,

we have

Wh(ω) = 2n − 4

(
n−1∑
i=1

(
n− 2

i− 1

)
−
(
n− 2

k − 1

))

= 4

(
n− 2

k − 1

)
,
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and the result follows.

Lemma 2. Let ω ∈ Fn2 with wt(ω) = k, 2 ≤ k ≤ n− 1. Then

Wh(ω) ≤ 4

(
n− 2

dn−22 e

)
.

Proof. Let ωi = 1 if i ∈ {s1, s2, . . . , sk}. We have

Wh(ω) = 1 +

n∑
i=1

∑
wt(x)=i

(−1)xi+xs1
+xs2

+···+xsk

= 2n − 2|
n⋃
i=1

{x| wt(x) = i and xi + xs1 + xs2 + · · ·+ xsk = 1}|

= 2n − 2

n∑
i=1

|Ai|,

where Ai = {x| wt(x) = i and xi + xs1 + xs2 + · · ·+ xsk = 1}. Now, we compute |Ai| as
follows.

We use the convention that
(
a
b

)
is 0 if b > a. If i /∈ {s1, s2, . . . , sk}, then

|Ai| =

(
k + 1

1

)(
n− k − 1

i− 1

)
+

(
k + 1

3

)(
n− k − 1

i− 3

)
+ · · ·+

(
k + 1

di

)(
n− k − 1

i− di

)
.

If i ∈ {s1, s2, . . . , sk}, then

|Ai| =
(
k − 1

1

)(
n− k + 1

i− 1

)
+

(
k − 1

3

)(
n− k + 1

i− 3

)
+ · · ·+

(
k − 1

di

)(
n− k + 1

i− di

)
.

Therefore, we have

n∑
i=1

|Ai| =

n∑
i=1

i/∈{s1,s2,...,sk}

di+1

2∑
j=1

(
k + 1

2j − 1

)(
n− k − 1

i− 2j + 1

)

+

n∑
i=1

i∈{s1,s2,...,sk}

di+1

2∑
j=1

(
k − 1

2j − 1

)(
n− k + 1

i− 2j + 1

)
.

Since

n∑
i=1

di+1

2∑
j=1

(
k + 1

2j − 1

)(
n− k − 1

i− 2j + 1

)

=

dn2 e∑
j=1

n∑
i=2j−1

(
k + 1

2j − 1

)(
n− k − 1

i− 2j + 1

)

=

dn2 e∑
j=1

(
k + 1

2j − 1

)
2n−k−1, since n− 2j + 1 ≥ n− k − 1

= 2n−1, since 2
⌈n

2

⌉
− 1 ≥ k + 1 if n is odd and, if n is even,
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then 2dn2 e − 1 = n− 1 is the highest odd integer ≤ k + 1. Next, we have

n∑
i=1

|Ai| = 2n−1 +

n∑
i=1

i∈{s1,s2,...,sk}

di+1

2∑
j=1

(C1 − C2)

= 2n−1 −
n∑
i=1

i/∈{s1,s2,...,sk}

di+1

2∑
j=1

(C1 − C2),

where

C1 =

(
k − 1

2j − 1

)(
n− k + 1

i− 2j + 1

)
, C2 =

(
k + 1

2j − 1

)(
n− k − 1

i− 2j + 1

)
.

For 1 ≤ k ≤ n− 1, let

Sk = max |{
n∑
i=1

i∈{s1,s2,...,sk}

di+1

2∑
j=1

(C1 − C2)}|.

It is easy to verify that Sk = Sn−k and Sk decreases initially and then increases. That
is, Sk achieves the maximum value when k = 1 and achieves the minimum value when
k = dn2 e. Hence, by Lemma 1,

Sk ≤ 2

(
n− 2

dn−22 e

)
.

Therefore,

2n−1 − 2

(
n− 2

dn−22 e

)
≤

n∑
i=1

|Ai| ≤ 2n−1 + 2

(
n− 2

dn−22 e

)
,

and the result follows.

Lemma 3. Let ω ∈ Fn2 with wt(ω) = n. Then Wh(ω) = 0.

Proof. We have

Wh(ω) = 1 +

n∑
i=1

∑
wt(x)=i

(−1)xi+x1+x2+···+xn

= 2n − 2|
n⋃
i=1

{x| wt(x) = i and x1 + · · ·+ xi−1 + xi+1 + · · ·+ xn = 1}|

= 2n − 4

((
n− 1

1

)
+

(
n− 1

3

)
+

(
n− 1

5

)
+ · · ·+

(
n− 1

dn−1

))
= 0.

7



Theorem 3. If h is the HWBF defined on Fn2 , then

nl(h) = 2n−1 − 2

(
n− 2

dn−22 e

)
.

Proof. By Lemmas 1–3 we have

max
ω∈Fn

2

|Wh(ω)| = 4

(
n− 2

dn−22 e

)
,

and the result follows.

Remark 1. For n odd,

nl(h) = 2

n−3
2∑
i=0

(
n− 1

i

)
+

(
n− 1
n−1
2

)
− 2

(
n− 2
n−3
2

)
= 2

dn2 e−2∑
i=0

(
n− 1

i

)
,

which is exactly Lobanov’s bound on the nonlinearity for n-variable functions with op-
timum algebraic immunity (albeit the HWBF function does not have optimal algebraic
immunity).

3.2. Algebraic immunity

The algebraic immunity of the HWBF is a non-decreasing sequence of n.
To prove this, let us first recall a known result:

Lemma 4 (Proposition 1 of [6]). Let f , g be two Boolean functions in the variables
x1, . . . , xn with AI(f) = AI(g) = d, and let h = (1 + xn+1)f + xn+1g ∈ Bn+1. Then
d ≤ AI(h) ≤ d+ 1.

Note that we know also from [6] that AI(h) = d if and only if there exists f1, g1 ∈ Bn
of algebraic degree d such that {f · f1 = 0, g · g1 = 0} or {(1 + f) · f1 = 0, (1 + g) · g1 = 0}
and deg(f1+g1) ≤ d−1, but we shall not need to use it here. Clearly, AI(hn) = AI(h′n).
Lemma 4 immediately implies the next result.

Lemma 5. We have AI(hn+1) ≥ AI(hn).

We next bound the algebraic immunity from below.

Theorem 4. We have
AI(hn) ≥

⌊n
3

⌋
+ 1.

Proof. We show that, if h ·g = 0 or (h+1) ·g = 0 for g ∈ Bn such that deg(g) ≤ d = bn3 c,
then g = 0.

We first assume that (h+ 1) · g = 0. Let

g =
∑

K⊆{1,2,...,n}
|K|≤d

aK
∏
k∈K

xk.

Then g(x) = 0, for any x such that h(x) = 0. We denote a∅ by a0 and a{i1,...,ik} by
ai1i2...ik .

8



Since g(0, . . . , 0) = 0, we have a0 = 0. Since g(0, 1, 0, . . . , 0) = 0 then a2 = 0.
Similarly, we have a3 = . . . = an = 0. Since g(0, 0, 1, 1, 0, . . . , 0) = 0 then a34 = 0.
Similarly, we have a35 = . . . = an−1,n = 0.

In general, let wt(x) = i, x1 = x2 = . . . = xi = 0 and xs1 = xs2 = . . . = xsi = 1,
where i + 1 ≤ s1 < s2 < . . . < si ≤ n. Then h(x) = xi = 0. Therefore, g(x) = 0;
moreover, g(y) = 0 for every y � x; then as1,s2,...,si = 0. Hence, we obtain

g(x) = a1x1

+ a12x1x2 + · · ·+ a1nx1xn + a23x2x3 + · · ·+ a2nx2xn

(i.e. the degree 2 terms containing x1 or x2)

+ a123x1x2x3 + · · ·+ a3,n−1,nx3xn−1xn

(i.e. the degree 3 terms containing x1, x2, or x3)

+ · · ·
+ a12...dx1x2 · · ·xd + · · ·+ ad,n−d+2,...,nxdxn−d+2 · · ·xn.

(i.e. the degree n terms containing x1, or x2, . . . , or xd)

The following Claims 2–4 will prove that all these coefficients of g must be 0. In the
proof, the following Claim 1 will be frequently used.

Claim 1: For k ≥ 1; i > k and i+ 1 ≤ s1 < s2 < . . . < si−1 ≤ n, we have

ak,s1,s2,...,si−1
=

∑
|J|=k−1

J⊆{s1,...,si−1}

ak,J .

In particular, a13 = . . . = a1n = a134 = . . . = a1,n−d+2,...,n = a1.
Proof: Since g(1, 0, 1, 0, . . . 0) = 0, we have a13 = a1. Similarly, a14 = . . . = a1n = a1.
In general, let wt(x) = i > 1, x1 = xs1 = xs2 = . . . = xsi−1 = 1, where i + 1 ≤ s1 <
s2 < . . . < si−1 ≤ n. Then h(x) = xi = 0. Therefore, g(x) = 0 and by induction,
a1,s1,s2,...,si−1

= a1 +a1,s1 + · · ·+a1,si−1
+a1,s1,s2 + · · ·+a1,si−2,si−1

+ · · ·+a1,s2,...,si−1
=

a1 + a1 + · · · + a1 = a1, since
(
i−1
0

)
+
(
i−1
1

)
+ · · · +

(
i−1
i−2
)

= 2i−1 − 1. Consider x =
(0, 1, 0, 1, 1, 0, . . . , 0). Then h(x) = x3 = 0. Therefore, g(x) = 0 and a245 = a24 + a25.
In general, let wt(x) = i > 2, x2 = xs1 = xs2 = . . . = xsi−1

= 1, where i + 1 ≤
s1 < s2 < . . . < si−1 ≤ n. Then h(x) = xi = 0. Therefore, g(x) = 0 and by induction,
a2,s1,s2,...,si−1 = a2,s1 +a2,s2 + · · ·+a2,si−1 +a2,s1,s2 + · · ·+a2,si−2,si−1 + · · ·+a2,s2,...,si−1 =

a2,s1 + · · ·+ a2,si−1
, since a2,s1,s2,...,sj + · · ·+ a2,si−j ,...,si−1

=
(
i−2
j−1
)
(a2,s1 + · · ·+ a2,si−1

)

and
(
i−2
0

)
+
(
i−2
1

)
+ · · · +

(
i−2
i−3
)

= 2i−2 − 1. In general, let wt(x) = i > k, xk = xs1 =
xs2 = . . . = xsi−1

= 1, where i + 1 ≤ s1 < s2 < . . . < si−1 ≤ n. Then h(x) = xi = 0.
Therefore, g(x) = 0 and by induction the claim follows.

Claim 2: For 1 ≤ k ≤ d and d + 1 ≤ s1 < s2 < . . . < sk−1 ≤ n, we have
ak,s1,s2,...,sk−1

= 0. That is, a1 = a2,d+1 = · · · = a2,n = a3,d+1,d+2 = · · · = ad,n−d+2,...,n =
0.
Proof: For k = 1, consider x = (1, 0, . . . , 0, 1 . . . , 1) such that wt(x) = d + 1 and
xn−d+1 = . . . = xn = 1. Since d = bn3 c, we have d + 1 < n − d. Then we have
h(1, 0, . . . , 0, 1, . . . , 1) = xd+1 = 0 and therefore g(1, 0, . . . , 0, 1, . . . , 1) = 0. That is,
a1+a1,n−d+1+· · ·+a1n+a1,n−d+1,n−d+2+· · ·+a1,n−d+2,...,n = 0. Then by Claim 1, a1 =
0. For k = 2, consider the points (0, 1, 0, . . . , 0, 1, . . . , 1) and (0, 1, 0, . . . , 0, 1, . . . , 1, 0) with
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weight d+ 1. Clearly, h(x) = 0 at these two points. Then g(x) = 0, and by Claim 1 we
have a2,n−d+1 + · · ·+ a2,n = a2,n−d + · · ·+ a2,n−1. That is, a2,n−d = a2,n. Similarly, we
have a2,d+1 = a2,d+2 = . . . = a2,n. Let d < w ≤ n and w − 1 be odd. Consider a point
(x1, x2, . . . , xn) of weight w satisfying x2 = 1, xw = 0 and xt1 = xt2 = . . . = xtw−1

= 1,
where d + 1 ≤ t1 < t2 < . . . < tw−1 ≤ n. Then g(x1, . . . , xn) = 0 and a2,t1 = 0. For
2 < k ≤ d, consider all those points (x1, x2, . . . , xn) of weight d+ 1 satisfying xk = 1 and
xt1 = xt2 = . . . = xtd = 1, where n− 2d+ 2 ≤ t1 < t2 < . . . < td ≤ n. Clearly, h(x) = 0
at all these points, since d + 1 < n − 2d + 2 (i.e. 3d ≤ n). Therefore, g(x) = 0 and
we get a system of equations. Then by Claim 1 we have ak,n−2d+2,n−2d+3,...,n−2d+k =

. . . = ak,n−k+2,n−k+3,...,n (in fact, we get a system of
(
2d−1
d

)
equations with

(
2d−1
k−1

)
vari-

ables; in particular, taking k = d, we get a system of
(
2d−1
d

)
equations with

(
2d−1
d−1

)
variables. It is easy to verify that the system has at most two solutions (0, 0, . . . , 0) and
(1, 1, . . . , 1)). Then we can deduce easily that ak,d+1,...,d+k−1 = . . . = ak,n−k+2,n−k+3,...,n.
Let d ≤ w < n and

(
w−1
k−1
)

be odd. Consider a point (x1, x2, . . . , xn) of weight w satisfying
xk = 1, xw = 0 and xt1 = xt2 = . . . = xtw−1 = 1, where d+1 ≤ t1 < t2 < . . . < tw−1 ≤ n.
Then g(x1, . . . , xn) = 0 and ak,t1,t2,...,tk−1

= 0, and the claim follows.
Claim 3: For 2 ≤ k ≤ d and r < k, we have ar,k,s1,...,sk−2

= ar,k = 0, where
d+ 1 ≤ s1 < . . . < sk−2 ≤ n.
Proof: Similar to Claim 1, for 2 ≤ k ≤ d and r < k, we have

ar,k,s1,s2,...,si−2 = ar,k +
∑

|J|=k−2
J⊆{s1,...,si−2}

ar,k,J ,

where i > k and i + 1 ≤ s1 < s2 < . . . < si−1 ≤ n. For k = 2, consider x =
(1, 1, 0, . . . , 0, 1, . . . , 1) such that wt(x) = d + 1 and xn−d+2 = . . . = xn = 1. Then
g(x) = 0 and a12 + a1,2,n−d+2 + · · · + a1,2,n + a1,2,n−d+2,n−d+3 + · · · + a1,2,n−d+3,...,n =
a12 + a12 + . . . + a12 = a12 = 0. For 2 < k ≤ d, similar to the proof of Claim 2, we can
deduce the result.

Claim 4: Let 1 ≤ u ≤ d−1. By induction, for u+1 ≤ k ≤ d and 0 < r1 < . . . < ru < k,
we have ar1,...,ru,k,s1,...,sk−u−1

= ar1,...,ru,k = 0, where d+ 1 ≤ s1 < s2 < . . . < sk−u−1 ≤
n.
Proof: Similar to Claim 1, we have

ar1,...,ru,k,s1,s2,...,si = ar1,...,ru,k +
∑

|J|=k−u−1
J⊆{s1,...,si}

ar1,...,ru,k,J ,

where i > k − u − 1 and d + 1 ≤ s1 < s2 < . . . < si−1 ≤ n. Consider x = (x1, . . . , xn)
such that wt(x) = d + 1, x1 = · · · = xu+1 = 1 and xn−d+u+1 = . . . = xn = 1.
Then g(x) = 0 and by induction, a1,...,u+1 + a1,...,u+1,n−d+u+1 + · · · + a1,...,u+1,n +
a1,...,u+1,n−d+u+1,n−d+u+2 + · · · + a1,...,u+1,n−d+u+2,...,n = a1,...,u+1 + a1,...,u+1 + . . . +
a1,...,u+1 = a1,...,u+1 = 0. For u + 1 < k ≤ d, similar to the proof of Claim 2, we can
deduce the result.

Therefore, for u+1 ≤ k ≤ d and 0 < r1 < . . . < ru < k, we have ar1,...,ru,k,s1,...,si = 0,
where i ≥ k− u− 1 and d+ 1 ≤ s1 < s2 < . . . < si ≤ n. That is, g = 0 and h+ 1 has no
annihilator of degree at most d.

Now consider h · g = 0. Let h̃(x1, . . . , xn) = h(x1 + 1, x2 + 1, . . . , xn + 1). It is
easy to verify that h̃(x1, . . . , xn) = h(xn−1, xn−2, . . . , x1, xn) + 1. By the above proof,
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Table 1: Algebraic Immunity of the HWBF

n 6 7 8 9 10 11 12 13 14 15
AI 3 3 4 4 4 5 5 5 5 6

Table 2: Behavior of the HWBF against Fast Algebraic Attacks

n 6 7 8 9 10 11 12 13
(d, e) (1,3) (1,5) (1,5) (1,7) (1,7) (1,9) (1,9) (1,11)

(2,3) (2,4) (2,4) (2,5) (2,6) (2,8) (2,8) (2,9)
(3,4) (3,4) (3,5) (3,6) (3,6) (3,8)

(4,5) (4,5) (4,6)

h̃(x1, . . . , xn) has no annihilator of degree at most d. Therefore, h(x1, . . . , xn) has no
annihilator of degree at most d, and the result follows.

In Table 1, we give the exact algebraic immunity of the n-variable HWBF, for 6 ≤
n ≤ 15.

Next, we investigate the normality of the HWBF.

Theorem 5. The HWBF h ∈ Bn is a bn2 c-normal function.

Proof. Let x ∈ Fn2 and x1 = x2 = . . . = xdn2 e = 0. Then wt(x) ≤ n − dn2 e ≤ d
n
2 e, and

h(x) = 0. Let E1 = {(0, . . . , 0, xdn2 e+1, . . . , xn)}. It is a bn2 c-dimensional subspace of Fn2 .
Clearly, h|E1

= 0, and h is an bn2 c-normal function.

Resistance to fast algebraic attacks.
Let deg(g1) = d < AI(h) and h · g1 = g2. We expect that deg(g2) is as high as
possible for any g1 of low degree. The optimum case for a Boolean function to resist fast
algebraic attacks is that deg(g1) + deg(g2) ≥ n for any g1 of degree less than AI(h). Let
deg(g2) = e. For 6 ≤ n ≤ 13, in Table 2, we give the lowest possible values of (d, e),
which seems to be quite acceptable.

There are some other variants of algebraic attacks. In [39], the authors introduced
the higher order algebraic attack, with applications towards cryptanalysis of Carlet–
Feng functions and rotation symmetric Boolean functions. However, those attacks do
not work, since in practice the number of variables of the filter function is much less
than the length of the LFSR. In [15], algebraic attacks on the augmented function are
introduced, which are dependant on low-degree conditional equations. Given a Boolean
function with a large number of variables and good algebraic immunity, it is hard to find
a low-degree equation. Therefore, higher order algebraic attacks and algebraic attacks
on the augmented function can not pose a security threat to the HWBF.
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Table 3: Algebraic immunity and nonlinearity of some randomly selected 10-variable Boolean functions

AI 5 5 5 5 5 5 5 5 5 5 5 5
nl 458 452 456 448 452 466 462 456 450 442 462 458

Summary of the features of the function:. While the HWBF is as simple as a symmetric
function (in the sense that the complexity of computing the output of HWBF is almost as
low as for a symmetric function), its BDD size is considerably higher, which has an inter-
est for cryptography. Symmetric functions are considered dangerous by the cryptographic
community, since an attacker could, in theory, use the symmetry property. In fact, an n
variable symmetric Boolean function has a BDD of size O(n2) [19], and therefore is weak
against BDD-based attacks. Moreover, many symmetric functions are not balanced and
there is no even-variable balanced symmetric function with optimum algebraic immunity
for n ≥ 4. The nonlinearity of the HWBF is similar to that of a symmetric function with
optimum algebraic immunity. It does not have the weakness of a symmetric function but
it has the same nice quality of being efficiently implementable in hardware, which allows
taking n much larger, thus increasing the strength of its cryptographic properties.

Comparing with a randomly selected balanced Boolean function, the algebraic immu-
nity and nonlinearity of this function may be low. In fact, when n = 10, AI(h) = 4 and
nl(h) = 372. We can generate 128 pseudo random different integers between 1 and 256
and get a Boolean function whose truth table has the value 1 in these 128 positions. Using
this method, we generated 64 randomly selected balanced Boolean functions. All these
functions have the optimum algebraic immunity 5 and their nonlinearities are between
442 and 466. Algebraic immunity and nonlinearity of the first 12 generated functions
can be found in Table 3. It is known that most of Boolean functions have almost optimal
algebraic immunity and a nonlinearity close to 2n−1 − 2n/2−1

√
2n ln 2 [32], for n large

enough. As a comparison, the nonlinearity of HWBF is only around 2n−1 − 2n−1
√

2
πn ,

quite far away from that number.

For the same number of variables n, the algebraic immunity and nonlinearity of
the HWBF are certainly lower than for other optimal functions, such as the Carlet–Feng
function [7]. However, since the HWBF is very simple and can be implemented efficiently
in hardware (which is the most important framework for us, since LFSR are better suited
for hardware implementation), we can use the HWBF with many more variables. In fact,
the time complexity of computing the output to the Carlet–Feng function is similar to
the complexity of computing the discrete log, which requires exponential time when
viewed asymptotically, e.g. using the index calculus method [9], the time complexity is
O(exp((1.587 + O(1))n1/3(lnn)2/3)), while the output of the HWBF can be computed
only in linear time (in fact, the number of ones can even be counted in logarithmic time
using the parallel algorithm [18]). As for the space complexity, using Pohlig–Hellman
method, the 20-variable Carlet–Feng function allows computing one output bit per cycle
with more than 1000 half-adders and full-adders. In comparison, the 64-variable HWBF
allows computing one output bit with only 26 − 1 = 63 half-adders and 26 − 6− 1 = 57
full-adders [16]. Therefore, by the time and space complexity, we compare the 16-variable
Carlet–Feng function with the 256-variable HWBF and give an example as follows.
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Example 1: Let fc ∈ B16 be the Carlet–Feng function discussed by [37]. Then

deg(fc) = 15, AI(fc) = 8 and nl(fc) = 32530. Let h̃ = h256 + x257x258 + x259x260 +

x261x262 + x263x264 + x265x266 + x267x268 + x269x270 + x271x272 (we take this function h̃,
since its efficiency of the implementation is similar to that of h256, while it has better
cryptographic properties). Then deg(h̃) = 255, AI(h̃) ≥ AI(h) ≥ 86 and nl(h̃) =

2271 − 29
(
254
127

)
(it should be noted that the resistance to the fast algebraic attack of h̃ is

also better than that of h since if h̃ ∗ g1 = g2, then h ∗ g1 = g2 + (x257x258 + x259x260 +
x261x262 +x263x264 +x265x266 +x267x268 +x269x270 +x271x272)∗g1). Recall that the fast

correlation attack has an on-line complexity proportional to
(
1
ε

)2
, where ε = 1

2 −
nl(f)
2n

is the so-called bias [26]. The algebraic attack has an on-line complexity proportional to
NωAI(f), where N is the length of the register and ω ≈ 2.37 (see e.g. [17]). Therefore,

the bias of fc is ε = 0.0036, while the bias of h̃ is ε = 0.0001. As for the algebraic attack,
fc has an on-line complexity proportional to N18.96, while the algebraic attack on h̃ has
an on-line complexity proportional to N203.82. Moreover, for any ordering of variables,
BDD(h̃) > 251 [19], while BDD(fc) < 215. Therefore, the cryptographic properties of h̃
are much better than those of fc.

Concerning the resistance to fast algebraic attacks, it is more difficult to make com-
parisons since the known algorithms do not allow investigating large enough values of n;
however, it seems most probable that the HWBF function in a large number of variables
allows better resistance than the other known functions with good algebraic immunity.

4. Conclusion

This paper investigates some cryptographic properties of the HWBF. To summarize,
the HWBF is balanced, has optimum algebraic degree and satisfies strict avalanche cri-
terion. The algebraic immunity is at least bn3 c + 1. The function seems to have quite
acceptable behavior against fast algebraic attacks, as can be checked for small values of
n. It also has a high BDD size. Since the HWBF can be implemented very efficiently,
it can be used with a number of variables much larger than the other known functions
with good algebraic immunity; this allows reaching very good cryptographic properties
implying high resistance of the stream ciphers using it as a filter to the main attacks,
and in the same time high speed of these ciphers. The HWBF is therefore a very good
candidate for being used in the design of stream ciphers; indeed, very few functions have
been found so far which can allow resistance to all the main known attacks, and except
this one, none of them is very efficiently implementable.
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